Consensus-based Distributed Quickest Detection of Attacks with Unknown Parameters
نویسندگان
چکیده
Sequential attack detection in a distributed estimation system is considered, where each sensor successively produces one-bit quantized samples of a desired deterministic scalar parameter corrupted by additive noise. The unknown parameters in the pre-attack and post-attack models, namely the desired parameter to be estimated and the injected malicious data at the attacked sensors pose a significant challenge for designing a computationally efficient scheme for each sensor to detect the occurrence of attacks by only using local communication with neighboring sensors. The generalized Cumulative Sum (GCUSUM) algorithm is considered, which replaces the unknown parameters with their maximum likelihood estimates in the CUSUM test statistic. For the problem under consideration, a sufficient condition is provided under which the expected false alarm period of the GCUSUM can be guaranteed to be larger than any given value. Next, we consider the distributed implementation of the GCUSUM. We first propose an alternative test statistic which is asymptotically equivalent to that of GCUSUM. Then based on the proposed alternative test statistic and running consensus algorithms, we propose a distributed approximate GCUSUM algorithm which significantly reduce the prohibitively high computational complexity of the centralized GCUSUM. Numerical results show that the distributed approximate GCUSUM algorithm can provide a performance that is comparable to the centralized GCUSUM.
منابع مشابه
HF-Blocker: Detection of Distributed Denial of Service Attacks Based On Botnets
Abstract—Today, botnets have become a serious threat to enterprise networks. By creation of network of bots, they launch several attacks, distributed denial of service attacks (DDoS) on networks is a sample of such attacks. Such attacks with the occupation of system resources, have proven to be an effective method of denying network services. Botnets that launch HTTP packet flood attacks agains...
متن کاملAdaptive Quickest Change Detection with Unknown Parameters
In this report quickest detection of an abrupt distribution change with unknown time varying parameters is considered. A novel adaptive approach, Adaptive CUSUM Test, is proposed to tackle this problem, which is shown to outperform the celebrated Parallel CUSUM Test. Performance is evaluated through theoretical analysis and numerical simulations.
متن کاملDistributed Unknown-Input-Observers for Cyber Attack Detection and Isolation in Formation Flying UAVs
In this paper, cyber attack detection and isolation is studied on a network of UAVs in a formation flying setup. As the UAVs communicate to reach consensus on their states while making the formation, the communication network among the UAVs makes them vulnerable to a potential attack from malicious adversaries. Two types of attacks pertinent to a network of UAVs have been considered: a node att...
متن کاملNeural Network Based Protection of Software Defined Network Controller against Distributed Denial of Service Attacks
Software Defined Network (SDN) is a new architecture for network management and its main concept is centralizing network management in the network control level that has an overview of the network and determines the forwarding rules for switches and routers (the data level). Although this centralized control is the main advantage of SDN, it is also a single point of failure. If this main contro...
متن کاملIntrusion Detection in IOT based Networks Using Double Discriminant Analysis
Intrusion detection is one of the main challenges in wireless systems especially in Internet of things (IOT) based networks. There are various attack types such as probe, denial of service, remote to local and user to root. In addition to known attacks and malicious behaviors, there are various unknown attacks that some of them have similar behavior with respect to each other or mimic the norma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.00167 شماره
صفحات -
تاریخ انتشار 2018